

Application of modern tools for the thermo-acoustic study of annular combustion chambers

Franck Nicoud University Montpellier II – I3M CNRS UMR 5149 and CERFACS

Introduction

Introduction

Y. Sommerer & M. Boileau CERFACS

Introduction

SOME KEY INGREDIENTS

- Flow physics
 - turbulence, partial mixing, chemistry, two-phase flow , combustion modeling, heat loss, wall treatment, radiative transfer, ...
- Acoustics
 - complex impedance, mean flow effects, acoustics/flame coupling, non-linearity, limit cycle, non-normality, mode interactions, ...
- Numerics
 - Low dispersive low dissipative schemes, non linear stability, scalability, non-linear eigen value problems, …

• <u>www.top500.org</u> – june 2010

- # Site
- 1 Oak Ridge National Laboratory USA
- 2 National Supercomputing Centre in Shenzhen (NSCS) China
- 3 DOE/NNSA/LANL USA
- 4 National Institute for Computational Sciences USA
- 5 Forschungszentrum Juelich (FZJ) Germany
- 6 NASA/Ames Research Center/NAS USA
- 7 National SuperComputer Center in Tianjin/NUDT China
- 8 DOE/NNSA/LLNL USA
- 9 Argonne National Laboratory USA
- 10 Sandia National Laboratories USA

November, 2010

Computer

Cray XT5-HE Opteron Six Core 2.6 GHz

Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU

BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband

Cray XT5-HE Opteron Six Core 2.6 GHz

Blue Gene/P Solution

SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon Westmere 2.93 Ghz, Infiniband

NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon HD 4870 2, Infiniband

eServer Blue Gene Solution

Blue Gene/P Solution

Cray XT5-HE Opteron Six Core 2.6 GHz

VKI Lecture

<u>www.top500.org</u> – june 2007 (3 years ago ...)

- # Site
- DOE/NNSA/LLNL 1 United States
- Oak Ridge National Laboratory 2 United States
- NNSA/Sandia National Laboratories 3 United States
- IBM Thomas J. Watson Research Center 4 United States
- Stony Brook/BNL, New York Center for Computional 5 United States
- DOE/NNSA/LLNL 6 United States
- Rensselaer Polytechnic Institute, Computional Center 7 United States
- **NCSA** 8 United States
- Barcelona Supercomputing Center 9 Spain
- Leibniz Rechenzentrum 10 Germany

Computer

BlueGene/L - eServer Blue Gene Solution IBM

Jaguar - Cray XT4/XT3 Cray Inc.

Red Storm - Sandia/ Cray Red Storm, Cray Inc.

BGW - eServer Blue Gene Solution IBM

New York Blue - eServer Blue Gene Solution IBM

ASC Purple - eServer pSeries p5 575 1.9 GHz IBM

eServer Blue Gene Solution IBM

Abe - PowerEdge 1955, 2.33 GHz, Infiniband Dell

MareNostrum - BladeCenter JS21 Cluster, IBM

HLRB-II - Altix 4700 1.6 GHz SGI

November, 2010

• Large scale unsteady computations require huge computing resources, an efficient codes ...

Thermo-acoustic instabilities

The Berkeley backward facing step experiment.

Thermo-acoustic instabilities

- Self-sustained oscillations arising from the coupling between a source of heat and the acoustic waves of the system
- Known since a very long time (Rijke, 1859; Rayleigh, 1878)
- Not fully understood yet ...
- but surely not desirable ...

Better avoid them ...

Flame/acoustics coupling

Rayleigh criterion:

Flame/acoustics coupling promotes instability if pressure and heat release fluctuations are in phase

A tractable 1D problem

Equations

November, 2010

Dispersion relation

- Solve the 4x4 homogeneous linear system to find out the 4 wave amplitudes
- Consider Fourier modes

$$p'(x,t) = \Re(\hat{p}(x)e^{-j\omega t})$$

 $\begin{cases} \Im(\omega) < 0: \text{ damped mode} \\ \Im(\omega) > 0: \text{ amplified mode} \end{cases}$

• Condition for non-trivial (zero) solutions to exist

$$\cos\left(\frac{\omega L}{4c_1}\right) \times \left[\cos^2\left(\frac{\omega L}{4c_1}\right) - \frac{3}{4} - \frac{1}{4}\frac{ne^{j\omega\tau} - 1}{ne^{j\omega\tau} + 3}\right] = 0$$
Uncoupled modes
November, 2010
VKI Lecture

Stability of the coupled modes

• Eigen frequencies

$$\cos^{2}\left(\frac{\omega L}{4c_{1}}\right) - \frac{3}{4} - \frac{1}{4}\frac{ne^{j\omega\tau} - 1}{ne^{j\omega\tau} + 3} = 0$$

• Steady flame *n=0*:

$$\omega_{m,0} = \frac{4c_1}{L} \left[\pm \arccos\left(\pm\sqrt{\frac{2}{3}}\right) + 2m\pi \right], \quad m = 0,1,2,\dots$$

• Asymptotic development for *n*<<1:

$$\omega_{m} = \omega_{m,0} - n \frac{4c_{1}}{9L\sin(\omega_{m,0}L/2c_{1})} \left[\cos(\omega_{m,0}\tau) + j\sin(\omega_{m,0}\tau)\right] + o(n)$$
Complex pulsation shift

Kaufmann, Nicoud & Poinsot, Comb. Flame, 2002

November, 2010

VKI Lecture

Time lag effect

- The imaginary part of the frequency is $-n \frac{4c_1 \sin(\omega_{m,0}\tau)}{9L \sin(\omega_{m,0}L/2c_1)}$
- Steady flame modes such that

$$\sin(\omega_{m,0}L/2c_1) < 0$$

November, 2010

Time lag effect

- The imaginary part of the frequency is $-n \frac{4c_1 \sin(\omega_{m,0}\tau)}{9L \sin(\omega_{m,0}L/2c_1)}$
- Steady flame modes such that

$$\sin(\omega_{m,0}L/2c_1)>0$$

• The unsteady HR destabilizes the flame if

$$\sin(\omega_{m,0}\tau) < 0 \implies \pi < \omega_{m,0}\tau < 2\pi[2\pi] \implies \frac{T_{m,0}}{2} < \tau < T_{m,0} \begin{bmatrix} T_{m,0} \end{bmatrix} \\
 \underbrace{\text{unstable}}_{0 \quad T_{m,0}} \xrightarrow{T_{m,0}} 3T_{m,0}/2 \quad 2T_{m,0} \quad 5T_{m,0}/2 \quad 3T_{m,0} \quad \tau$$

November, 2010

VKI Lecture

Numerical example

November, 2010

VKI Lecture

OUTLINE

- 1. Computing the whole flow
- 2. Computing the fluctuations
- 3. Boundary conditions
- 4. Analysis of an annular combustor

OUTLINE

- 1. Computing the whole flow
- 2. Computing the fluctuations
- 3. Boundary conditions
- 4. Analysis of an annular combustor

BASIC EQUATIONS

reacting, multi-species gaseous mixture

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial (\rho u_i)}{\partial x_i} = 0 & r = R/W \\ \frac{\partial (\rho Y_k)}{\partial t} &+ \frac{\partial}{\partial x_i} \left(\rho \left(u_i + V_{k,i} \right) Y_k \right) = \dot{\omega}_k & \\ \frac{\partial (\rho u_i)}{\partial t} &+ \frac{\partial (\rho u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} & \dot{\omega}_T = -\sum_k \Delta h_{f,k}^0 \dot{\omega}_k \\ \rho \frac{DE}{Dt} &= -\frac{\partial q_i^*}{\partial x_i} + \frac{\partial}{\partial x_j} (\tau_{ij} u_i) - \frac{\partial}{\partial x_i} (p u_i) + \dot{\omega}_T & C_p = \sum_k C_{p,k} Y_k \\ \frac{p}{\rho} &= r T \end{split}$$

November, 2010

BASIC EQUATIONS energy / enthalpy forms

$h_{s,k} = \int_{T_0}^T C_{\underline{p,k}} dT$	Sensible enthalpy of species k
$h_k = \int_{T_0}^T C_{p,k} dT + \Delta h_{f,k}^0$	Specific enthalpy of species k
$h_s = \sum_k h_{s,k} Y_k$	Sensible enthalpy of the mixture
$h = h_s + \sum_k \Delta h_{f,k}^0 Y_k$	Specific enthalpy of the mixture
$h_t = h + u_i u_i / 2$	Total enthalpy of the mixture
$H = h_s + u_i u_i / 2$	Total non chemical enthalpy of the mixture
$E = H - p/\rho$	Total non chemical energy of the mixture
November, 2010	VKI Lecture

BASIC EQUATIONS

Stress and heat flux

$$\tau_{ij} = -\frac{2}{3}\mu \frac{\partial u_l}{\partial x_l} \,\delta_{ij} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$$

$$q_{i} = \underbrace{-\lambda \frac{\partial T}{\partial x_{i}} + \rho \sum_{k} h_{s,k} Y_{k} V_{k,i}}_{q_{i}^{*}} + \rho \sum_{k} \Delta h_{f,k}^{0} Y_{k} V_{k,i}}_{q_{i}^{*}}$$

$$\mu = \mu_{ref} \left(\frac{T}{T_{ref}}\right)^c \qquad \qquad \lambda = \frac{\mu C_p}{\Pr} \qquad \qquad \mathcal{D}_k = \frac{1 - T_k}{\sum_{j \neq k} X_j / \mathcal{D}_{jk}} \\ \mathcal{D}_k = \nu / Sc_k.$$

 \mathbf{V}

1

turbulent flow laminar flow

Turbulence

- Turbulence is contained in the NS 1. equations
- The flow regime (laminar vs 2. turbulent) depends on the Reynolds number :

November, 2010

RANS – LES - DNS

About the RANS approach

- Averages are not always enough (instabilities, growth rate, vortex shedding)
- Averages are even not always meaningful

The basic idea of LES

November, 2010

VKI Lecture

31

LES equations

- Assumes small commutation errors
- Filtered version of the flow equations :

$$\begin{split} \frac{\partial \overline{\rho} \, \widetilde{Y}_k}{\partial t} &+ \frac{\partial}{\partial x_j} (\overline{\rho} \, \widetilde{Y}_k \, \widetilde{u}_j) = -\frac{\partial}{\partial x_j} [\overline{J_{k,j}} + J_{k,j}^{\mathrm{SGS}}] + \overline{\omega}_k, \\ \frac{\partial \overline{\rho} \, \widetilde{u}_i}{\partial t} &+ \frac{\partial}{\partial x_j} (\overline{\rho} \, \widetilde{u}_i \, \widetilde{u}_j) = -\frac{\partial}{\partial x_j} [\overline{P} \, \delta_{ij} - \overline{\tau_{ij}} - \tau_{ij}^{\mathrm{SGS}}], \\ \frac{\partial \overline{\rho} \, \widetilde{E}}{\partial t} &+ \frac{\partial}{\partial x_j} (\overline{\rho} \, \widetilde{E} \, \widetilde{u}_j) = -\frac{\partial}{\partial x_j} [\overline{u_i} \, (P \, \delta_{ij} - \tau_{ij}) + \overline{q}_j^* + q_j^{\mathrm{SGS}}] + \overline{\omega}_T, \end{split}$$

November, 2010

VKI Lecture

Laminar contributions

• Assumes negligible cross correlation between gradient and diffusion coefficients:

$$\overline{J_{k,i}} = -\overline{\rho \left(D_k \frac{W_k}{W} \frac{\partial X_k}{\partial x_i} - Y_k V_i^{cor} \right)} \\ \approx -\overline{\rho} \left(\overline{D}_k \frac{W_k}{W} \frac{\partial \widetilde{X}_k}{\partial x_i} - \widetilde{Y}_k \widetilde{V}_i^{cor} \right)$$

$$\overline{q_i^*} = -\overline{\lambda} \frac{\overline{\partial T}}{\partial x_i} + \sum_{k=1}^N \overline{J_{k,i}} h_{s,k}$$
$$\approx -\overline{\lambda} \frac{\overline{\partial T}}{\partial x_i} + \sum_{k=1}^N \overline{J_{k,i}} \widetilde{h}_{s,k}$$

$$\overline{\tau_{ij}} = \overline{2\mu(S_{ij} - \frac{1}{3}\delta_{ij}S_{ll})} \\ \approx 2\overline{\mu}(\widetilde{S}_{ij} - \frac{1}{3}\delta_{ij}\widetilde{S}_{ll})$$

November, 2010

VKI Lecture

Sub-grid scale contributions

• Sub-grid scale stress tensor to be modeled

$$\tau_{ij}^{sgs} = \overline{\rho} \, \widetilde{u}_i \widetilde{u}_j - \rho \, u_i u_j$$

• Sub-grid scale mass flux to be modeled

$$J_{k,j}^{sgs} = -\overline{\rho} \, \widetilde{Y}_k \widetilde{u}_j + \overline{\rho Y_k u_j}$$

• Sub-grid scale heat flux to be modeled

$$q_{j}^{sgs} = -\overline{\rho} \,\widetilde{E} \,\widetilde{u}_{j} + \overline{\rho \,E \,u_{j}}$$

The Smagorinsky model

• From dimensional consideration, simply assume:

$$\tau_{ij}^{sgs} - \frac{1}{3}\tau_{kk}^{sgs}\delta_{ij} = 2\mu_{sgs}\left(\widetilde{S}_{ij} - \frac{1}{3}\widetilde{S}_{kk}\delta_{ij}\right), \text{ with } \widetilde{S}_{ij} = \frac{1}{2}\left(\frac{\partial\widetilde{u}_i}{\partial x_j} + \frac{\partial\widetilde{u}_j}{\partial x_i}\right)$$
$$\mu_{sgs} = \overline{\rho}(C_s\Delta)^2\sqrt{2\widetilde{S}_{ij}\widetilde{S}_{ij}}$$

• The Smagorinsky constant is fixed so that the proper dissipation rate is produced, $C_s = 0.18$

The Smagorinsky model

- The sgs dissipation is $\mathcal{E}_{sgs} = \tau_{ij}^{sgs} \widetilde{S}_{ij} \approx 2\mu_{sgs} \widetilde{S}_{ij} \widetilde{S}_{ij}$ always positive
- Very simple to implement, no extra CPU time
- Any mean gradient induces sub-grid scale activity and dissipation, even in 2D !!

V = W = 0 but $\mu_{sgs} \neq 0$

because
$$U = U(y)$$
 and $S_{12} \neq 0$

No laminar-to-turbulent transition possible

Strong limitation due to its lack of universality.
 Eg.: in a channel flow, Cs=0.1 should be used
The Dynamic procedure (constant ρ)

• By performing $N\!S$, the following sgs contribution appears

• Let's apply another filter to these equations

By performing NS, one obtains the following equations

$$\rho \frac{\partial \vec{u}_i}{\partial t} + \rho \frac{\partial \vec{u}_i \vec{u}_j}{\partial x_j} = -\frac{\partial \vec{P}}{\partial x_i} + \frac{\partial \left(\overline{\tau_{ij}} + T_{ij}^{sgs}\right)}{\partial x_j} \qquad T_{ij}^{sgs} = \rho \vec{u}_i \vec{u}_j - \rho \vec{u}_i \vec{u}_j \qquad \textbf{B}$$

• From **A** and **B** one obtains

$$T_{ij}^{sgs} = \overleftarrow{\tau_{ij}^{sgs}} - \rho \overleftarrow{\overline{u_i}} \overrightarrow{\overline{u_j}} + \rho \overleftarrow{\overline{u_i}} \overleftarrow{\overline{u_j}}$$

The dynamic Smagorinsky model

• Assume the Smagorinsky model is applied twice

$$\tau_{ij}^{sgs} - \frac{1}{3} \tau_{kk}^{sgs} \delta_{ij} = 2\rho (C_s \overline{\Delta})^2 \sqrt{2\overline{S_{ij}} \overline{S_{ij}}} \overline{S_{ij}}$$
$$T_{ij}^{sgs} - \frac{1}{3} T_{kk}^{sgs} \delta_{ij} = 2\rho (C_s \overline{\Delta})^2 \sqrt{2\overline{S_{ij}} \overline{S_{ij}}} \overleftrightarrow{\overline{S_{ij}}}$$

Assume the same constant can be used and write the Germano identity

$$T_{ij}^{sgs} = \overrightarrow{\tau_{ij}^{sgs}} - \rho \overrightarrow{u_i u_j} + \rho \overrightarrow{u_i u_j}$$

$$2\rho \left(C_s \overrightarrow{\Delta}\right)^2 \sqrt{2\overrightarrow{S_{ij}}} \overrightarrow{S_{ij}} + \frac{1}{3} T_{kk}^{sgs} \delta_{ij} = 2\rho \left(C_s \overrightarrow{\Delta}\right)^2 \sqrt{2\overrightarrow{S_{ij}}} \overrightarrow{S_{ij}} + \frac{1}{3} \overrightarrow{\tau_{kk}^{sgs}} \delta_{ij} - \rho \overrightarrow{u_i u_j} + \rho \overrightarrow{u_i u_j}$$

$$\boxed{C_s^2 M_{ij} = L_{ij}}$$
November, 2010
VKI Lecture
38

The dynamic procedure

The **dynamic** procedure can be applied **locally** :

- the constant depends on both **space** and **time**
- good for **complex** geometries,
- but requires clipping (no warranty that the constant is positive)

$$C^2 \equiv \frac{L_{ij}M_{ij}}{M_{ij}M_{ij}}$$

 M_{ii} depends on the SGS model

 L_{ii} can be computed from the resolved scales

How often should we accept to clip ?

The global dynamic procedure

The **dynamic** procedure can also be applied **globally**:

- The constant depends only on time
- **no clipping** required,
- just as good as the **static** model it is based on
- Requires an improved time scale estimate

$$C^{2} \equiv \frac{\left\langle L_{ij}M_{ij}\right\rangle}{\left\langle M_{ij}M_{ij}\right\rangle}$$

 M_{ii} depends on the SGS model

 L_{ii} can be computed from the resolved scales

November, 2010

Sub-grid scale model

- 1. Practically, eddy-viscosity models are often preferred
- 2. The gold standard today is the **Dynamic Smagorinsky** model

3. Looking for an improved model for the time scale

Description of the σ - model

• Eddy-viscosity based: $\mu_{sgs} = \rho (C\Delta)^2 \times (\text{time scale})^{-1}$

- Start to compute the **singular values** of the velocity **gradient tensor** (neither difficult nor expensive)
- $0 \le \sigma_3 \le \sigma_2 \le \sigma_1$

Sub-grid scale contributions

• Sub-grid scale stress tensor

$$\tau_{ij}^{sgs} = \overline{\rho} \, \widetilde{u}_i \widetilde{u}_j - \rho \, u_i u_j \quad \rightarrow \quad \mu_{sgs} \text{ based model}$$

• Sub-grid scale mass flux of species k and heat flux

$$\begin{split} J_{k,j}^{sgs} &= -\overline{\rho} \, \widetilde{Y}_k \widetilde{u}_j + \overline{\rho} \, Y_k u_j & \longrightarrow \quad J_{k,j}^{sGS} = -\overline{\rho} \left(D_k^{sGS} \frac{W_k}{W} \frac{\partial \widetilde{X}_k}{\partial x_j} - \widetilde{Y}_k \, V_j^{c,sGS} \right) \\ q_j^{sgs} &= -\overline{\rho} \, \widetilde{E} \, \widetilde{u}_j + \overline{\rho} \, E \, u_j & \longrightarrow \quad q_j^{sGS} = -\lambda_{sGS} \, \frac{\partial \widetilde{T}}{\partial x_j} + \sum_{k=1}^N J_{k,j}^{sGS} \, \widetilde{h}_s^k \end{split}$$

• In practice, constant SGS Schmidt and Prandtl numbers

$$D_k^{sgs} = \frac{\mu_{sgs}}{\overline{\rho} S c_k^{sgs}}; \quad S c_k^{sgs} = 0.7 \qquad \qquad \lambda_{sgs} = \frac{\mu_{sgs} C_p}{\Pr_{sgs}}; \quad \Pr_{sgs} = 0.5$$

November, 2010

VKI Lecture

Sub-grid scale heat release

• The chemical source terms are highly non-linear (Arrhenius type of terms)

$$\dot{\omega}_F = -A_1 \rho^2 T^{\beta_1} Y_F Y_O \exp\left(-\frac{T_A}{T}\right)$$

• The flame thickness is usually very small (0.1 - 1 mm), smaller than the typical grid size

The G-equation approach

• The flame is identified as a given surface of a G field

Poinsot & Veynante, 2001

• The G-field is smooth and computed from

$$\frac{\partial \overline{\rho} \widetilde{G}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_i \widetilde{G}}{\partial x_i} = \rho_0 \overline{s}_T \left| \nabla \overline{G} \right|$$

• "Universal " turbulent flame speed model not available ...

• From laminar premixed flames theory:

$$S_L^o \propto \sqrt{a A}$$
, and, $\delta_L^0 \propto \frac{a}{S_L^0} \propto \sqrt{\frac{a}{A}}$,

• Multiplying a and dividing A by the same thickening factor F

Poinsot & Veynante, 2001

• The thickened flame propagates at the proper laminar speed but it is less wrinkled than the original flame:

Total reaction rate R₁

Total reaction rate R₂

• This leads to a decrease of the total consumption: $R_1 \rightarrow R_2 = \frac{R_1}{E} < R_1$

• An efficiency function is used to represent the sub-grid scale wrinkling of the thickened flame

Diffusivity: $a \rightarrow Fa \rightarrow EFa$ Preexponential constant: $A \rightarrow A/F \rightarrow EA/F$

thickening

SGS wrinckling

- This leads to a thickened flame (resolvable) with increased velocity (SGS wrinkling) with the proper total rate of consumption
- The efficiency function is a function of characteristic velocity and length scales ratios

November, 2010

VKI Lecture

• Advantages

- 1. finite rate chemistry (ignition / extinction)
- 2. fully resolved flame front avoiding numerical problems
- 3. easily implemented and validated
- 4. degenerates towards DNS: does laminar flames
- But the mixing process is not computed accurately outside the reaction zone
 - 1. Extension required for diffusion or partially premixed flames
 - Introduction of a sensor to detect the flame zone and switch the F and E terms off in the non-reacting zones

About solid walls

• In the near wall region, the total shear stress is constant. Thus the proper velocity and length scales are based on the wall shear stress τ_w :

$$u_{\tau} = \sqrt{\frac{\tau_{w}}{\rho}} \qquad l = \frac{\nu}{u_{\tau}}$$

• In the case of attached boundary layers, there is an inertial zone where the following universal velocity law is followed

y

$$u^{+} = \frac{1}{\kappa} \ln y^{+} + C, \qquad u^{+} = \frac{u}{u_{\tau}}, \qquad y^{+} = \frac{yu_{\tau}}{v}$$

$$\kappa: \text{ Von Karman constant}, \quad \kappa \approx 0.4$$

$$C: "\text{ Universal constant"}, \quad C \approx 5.2$$

Wall modeling

• A specific wall treatment is required to avoid huge mesh refinement or large errors,

Velocity gradient at wall assessed from a coarse grid

Exact velocity gradient at wall

• Use a coarse grid and the log law to impose the proper fluxes at the wall τ_{32}^{model} τ_{12}^{model} τ_{12}^{model}

About solid walls

• Close to solid walls, the largest scales are small ...

- Resolution requirement: $\Delta y^+ = O(1)$, Δz^+ and $\Delta x^+ = O(10)$!!

- Number of grid points: $O(R_{\tau}^{2})$ for wall resolved LES

VKI Lecture

Wall modeling in LES

- Not even the **most energetic** scales are resolved when the first off-wall point is in the log layer
- No reliable model available yet

OUTLINE

- 1. Computing the whole flow
- 2. Computing the fluctuations
- 3. Boundary conditions
- 4. Analysis of an annular combustor

Considering only perturbations

Approach: solve acoustic field using finite volume method

resolve only large scales (acoustic modes)

model small scales (combustion)

- ⇒ Compared to LES:
- simplified system of equations, coarser grid
- requires less computational time

Linearized Euler Equations

$$\frac{D\rho}{Dt} = -\rho\nabla\cdot\mathbf{u}$$

$$\rho \frac{D\mathbf{u}}{Dt} = -\nabla p$$

$$\frac{Ds}{Dt} = \frac{rq}{p}$$

- assume homogeneous mixture
- neglect viscosity
- decompose each variable into its mean and fluctuation

$$f(\mathbf{x},t) = f_0(\mathbf{x}) + f_1(\mathbf{x},t)$$

• assume small amplitude fluctuations

$$\frac{f_1}{f_0} \equiv \mathcal{E} \ll 1; \quad f = \rho, p, T, s = C_v \ln\left(\frac{p}{\rho^{\gamma}}\right)$$
$$\frac{\|\mathbf{u}_1\|}{c_0} \equiv \mathcal{E} \ll 1; \quad c_0 = \sqrt{\frac{\gamma p_0}{\rho_0}}$$

November, 2010

VKI Lecture

/

Linearized Euler Equations

$$\frac{\partial \rho_1}{\partial t} + \mathbf{u_0} \nabla \rho_1 + \mathbf{u_1} \nabla \rho_0 + \rho_0 \nabla \cdot \mathbf{u_1} + \rho_1 \nabla \cdot \mathbf{u_0} = 0$$

$$\rho_0 \frac{\partial \mathbf{u_1}}{\partial t} + \rho_0 \mathbf{u_0} \cdot \nabla \mathbf{u_1} + \rho_0 \mathbf{u_1} \cdot \nabla \mathbf{u_0} + \rho_1 \mathbf{u_0} \cdot \nabla \mathbf{u_0} + \nabla p_1 = 0$$
$$\frac{\partial s_1}{\partial t} + \mathbf{u_0} \nabla s_1 + \mathbf{u_1} \nabla s_0 = \frac{rq_1}{p_0} - \frac{rq_0 p_1}{p_0^2}$$

- the unknown are the small amplitude fluctuations,
- the mean flow quantities must be provided
- requires a model for the heat release fluctuation q₁
- contain all what is needed, and more ...: acoustics + vorticity + entropy

Zero Mach number assumption

• No mean flow or "Zero-Mach number" assumption

$$f(\mathbf{x},t) = f_0(\mathbf{x}) + f_1(\mathbf{x},t); \quad \frac{f_1}{f_0} \equiv \varepsilon \ll 1; \quad f = \rho, p, T, s = C_v \ln\left(\frac{p}{\rho^{\gamma}}\right)$$
$$\mathbf{u}(\mathbf{x},t) = \mathbf{u}_0(\mathbf{x}) + \mathbf{u}_1(\mathbf{x},t); \quad \frac{\|\mathbf{u}_1\|}{c_0} \equiv \varepsilon \ll 1; \quad c_0 = \sqrt{\frac{\gamma p_0}{\rho_0}}$$
$$\frac{\text{Equation}}{\text{Mass}} \frac{M \ll 1 \text{ and } M \ll L_f/L_a}{M \ll 1 \text{ and } M \ll \sqrt{L_f/L_a}}$$
$$\frac{\text{momentum}}{L_a}: \text{acoustic wavelength} \qquad L_f: \text{flame thickness}$$

• Probably well justified below 0.01

1

Linear equations

Mass:
$$\frac{\partial \rho_1}{\partial t} + \rho_0 div(\mathbf{u}_1) + \mathbf{u}_1 \cdot \nabla \rho_0 = 0$$
 Momentum: $\rho_0 \frac{\partial \mathbf{u}_1}{\partial t} = -\nabla p_1$
Energy: $\rho_0 C_v \left[\frac{\partial T_1}{\partial t} + \mathbf{u}_1 \cdot \nabla T_0 \right] = -p_0 \nabla \cdot \mathbf{u}_1 + q_1$ State: $\frac{p_1}{p_0} = \frac{\rho_1}{\rho_0} + \frac{T_1}{T_0}$

- The unknowns are the fluctuating quantities ρ_1 , \mathbf{u}_1 , T_1 , p_1
- The mean density, temperature, ... fields must be provided
- A model for the unsteady HR q_1 is required to close the system

Flame Transfer Functions

- Relate the global HR $Q_1(t) = \int_{\Omega} q_1(\mathbf{x}, t) d\Omega$ to upstream velocity fluctuations
- General form in the frequency space

$$\hat{Q}(\omega) = F(\omega) \times \hat{u}(\mathbf{x}_{ref}, \omega)$$

- n-τ model (Crocco, 1956), low-pass filter/saturation (Dowling, 1997), laminar conic or V-flames (Schuller et al, 2003), entropy waves (Dowling, 1995; Polifke, 2001), ...
- Justified for acoustically compact flames

Local FTF model

- Flame not necessarily compact
- Local FTF model

$$\frac{\hat{q}(\mathbf{x},\omega)}{q_{\text{mean}}} = n_l(\mathbf{x},\omega) \times e^{j\omega\tau_l(\mathbf{x},\omega)} \times \frac{\hat{\mathbf{u}}(\mathbf{x}_{\text{ref}},\omega) \cdot \mathbf{n}_{\text{ref}}}{U_{\text{bulk}}}$$

 n_l, τ_l : Two scalar fields

- The scalar fields must be defined in order to match the actual flame response
- LES is the most appropriate tool assessing these fields

Local FTF model

Giauque et al., AIAA paper 2008-2943

November, 2010

VKI Lecture

Back to the linear equations

- Let us suppose that we have a "reasonable" model for the flame response
- The set of linear equations still needs to be solved

Mass:
$$\frac{\partial \rho_1}{\partial t} + \rho_0 div(\mathbf{u}_1) + \mathbf{u}_1 \cdot \nabla \rho_0 = 0$$

Momentum: $\rho_0 \frac{\partial \mathbf{u}_1}{\partial t} = -\nabla p_1$ State: $\frac{p_1}{p_0} = \frac{\rho_1}{\rho_0} + \frac{T_1}{T_0}$
Energy: $\rho_0 C_v \left[\frac{\partial T_1}{\partial t} + \mathbf{u}_1 \cdot \nabla T_0 \right] = -p_0 \nabla \cdot \mathbf{u}_1 + q_1$

November, 2010

Time domain integration

- Use a finite element mesh of the geometry
- Prescribe boundary conditions
- Initialize with random fields
- Compute its evolution over time ...

• This is the usual approach in LES/CFD !

A simple annular combustor (TUM)

Pankiewitz and Sattelmayer, J. Eng. Gas Turbines and Power, 2003

VKI Lecture

Pankiewitz and Sattelmayer, J. Eng. Gas Turbines and Power, 2003

November, 2010

VKI Lecture

The Helmholtz equation

• Since 'periodic' fluctuations are expected, let's work in the frequency space

$$p_{1}(\mathbf{x},t) = \Re\left(\hat{p}(\mathbf{x})e^{-j\omega t}\right) \qquad \mathbf{u}_{1}(\mathbf{x},t) = \Re\left(\hat{\mathbf{u}}(\mathbf{x})e^{-j\omega t}\right)$$
$$q_{1}(\mathbf{x},t) = \Re\left(\hat{q}(\mathbf{x})e^{-j\omega t}\right)$$

From the set of linear equations for ρ₁, u₁, p₁, T₁, the following wave equation can be derived

$$\gamma p_0 \nabla \cdot \left(\frac{1}{\rho_0} \vec{\nabla} \hat{p}\right) + \omega^2 \hat{p} = j \omega (\gamma - 1) \hat{q}$$

November, 2010

3D acoustic codes

• Let us first consider the simple 'steady flame' case

$$\gamma p_0 \nabla \cdot \left(\frac{1}{\rho_0} \vec{\nabla} \hat{p}\right) + \omega^2 \hat{p} = 0$$

• With simple boundary conditions

$$\hat{p} = 0$$
 or $\rho_0 \boldsymbol{\omega} \, \hat{\mathbf{u}} \cdot \mathbf{n} = \nabla \hat{p} \cdot \mathbf{n} = 0$

• Use the Finite Element framework to handle complex geometries

Discrete problem

• If *m* is the number of nodes in the mesh, the unknown is now

$$\mathbf{P} = [\hat{p}_1, \hat{p}_2, ..., \hat{p}_m]^T$$

• Applying the FE method, one obtains

Linear
Eigenvalue
Problem
of size N
$$AP+\omega^2P=0$$
A : square matrix
discrete version of : $\gamma p_0 \nabla \cdot \left(\frac{1}{\rho_0} \nabla\right)$
November, 2010
VKI Lecture 70

Solving the eigenvalue problem

- The QR algorithm is the method of choice for small/medium scale problems
 Shur decomposition: AQ=QT, Q unitary, T upper triangular
- Krylov-based algorithms are more appropriate when only a few modes needs to be computed
 Partial Shur decomposition: AQ_n=Q_nH_n+E_n with n << m
- A possible choice: the Arnoldi method implemented in the P-ARPACK library (Lehoucq et al., 1996)

Solving the eigenvalue problem

 $A\hat{v}(x) = i\omega\hat{v}(x)$ $H_n + h_{n+1,n}q_{n+1}e_n^T$ $= Q_n$ Q_n \boldsymbol{A} +Ξ $m \times m$ $n \times n$ $m \times n$ $m \times n$ $m \times n$ eigenvalues of H: eigenvalues and approximation of ~vectors of A eigenvalues of A
Computing the TUM annular combustor

- FE mesh of the plenum + 12 injectors + swirlers + combustor + 12 nozzles
- Mean temperature field prescribed from experimental observations

TUM combustor: first seven modes

An industrial gas turbine burner

- Industrial burner (Siemens) mounted on a square cross section combustion chamber
- Studied experimentally (Schildmacher et al., 2000), by LES (Selle et al., 2004), and acoustically (Selle et al., 2005)

Instability in the LES

• From the LES, an instability develops at 1198 Hz

Acoustic modes

Turning mode

 The turning mode observed in LES can be recovered by adding the two 1192 Hz modes with a 90° phase shift

Selle et al., 2005

November, 2010

VKI Lecture

Realistic boundary conditions

• Complex, reduced boundary impedance

• Using the momentum equation, the most general BC is

$$\nabla \hat{p} \cdot \mathbf{n} - \frac{j\omega}{cZ} \, \hat{p} = 0$$

November, 2010

Discrete problem with realistic BCs

• In general, the reduced impedance depends on *w* and the discrete EV problem becomes non-linear:

$$\mathbf{AP} + \underbrace{\text{Boundary Terms}}_{\nabla \hat{p} \cdot \mathbf{n} = \frac{j\omega}{cZ(\omega)}\hat{p}} + \omega^2 \mathbf{P} = 0$$

• Assuming $\frac{1}{Z(\omega)} = \frac{1}{Z_0} + C_1 \omega + \frac{C_2}{\omega}$; Z_0, C_1, C_2 parameters Quadrat

$$\mathbf{AP} + \boldsymbol{\omega}\mathbf{BP} + \boldsymbol{\omega}^2\mathbf{CP} = 0$$

Quadratic Eigenvalue Problem of size N

November, 2010

VKI Lecture

From quadratic to linear EVP

- Given a quadratic EVP of size *N*: $AP + \omega BP + \omega^2 CP = 0$
- Add the variable: $\mathbf{R} = \boldsymbol{\omega} \, \mathbf{P}$
- Rewrite:

$$-\mathbf{I}\mathbf{R} + \omega \mathbf{I}\mathbf{P} = 0 \mathbf{A}\mathbf{P} + \mathbf{B}\mathbf{R} + \omega \mathbf{C}\mathbf{R} = 0$$

$$\Rightarrow \begin{bmatrix} \mathbf{0} & -\mathbf{I} \\ \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{P} \\ \mathbf{R} \end{bmatrix} + \omega \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{P} \\ \mathbf{R} \end{bmatrix} = 0$$

• Obtain an equivalent Linear EVP of size 2N and use your favorite method !!

Academic validation

(H) for the second seco

EXACT

ACOUSTIC SOLVER

November, 2010

VKI Lecture

• Designed for cooling purpose ...

• ... but has also an acoustic effect.

• The Rayleigh conductivity (Howe 1979)

• Under the M=0 assumption:

November, 2010

Academic validation

Question

- There are many modes in the low-frequency regime
- They can be predicted in complex geometries
- Boundary conditions and multiperforated liners have first order effect and they can be accounted for properly
- All these modes are potentially dangerous

Which of these modes are made unstable by the flame ?

Accounting for the unsteady flame

• Need to solve the thermo-acoustic problem

$$\begin{split} & \left[\gamma p_0 \nabla \cdot \left(\frac{1}{\rho_0} \vec{\nabla} \hat{p} \right) + \omega^2 \hat{p} = j \omega (\gamma - 1) \hat{q} \right] \\ \text{e.g.} : j \omega (\gamma - 1) \hat{q} &= \frac{(\gamma - 1) q_{\text{mean}}}{\rho_{0, x_{ref}} U_{\text{bulk}}} n_l (\mathbf{x}, \omega) e^{j \Re(\omega) \tau_l (\mathbf{x}, \omega)} \nabla \hat{p}_{\mathbf{x}_{\text{ref}}} \cdot \mathbf{n}_{\text{ref}} \quad \text{"local FTF model"} \end{split}$$

• In discrete form

$$\mathbf{AP} + \boldsymbol{\omega}\mathbf{BP} + \boldsymbol{\omega}^{2}\mathbf{CP} = \mathbf{D}(\boldsymbol{\omega})\mathbf{P}$$

A, B, C, D : square matrices

Non-Linear Eigenvalue Problem of size N

November, 2010

Iterative method

1. Solve the Quadratic EVP

$$\mathbf{AP} + \omega_0 \mathbf{BP} + \omega_0^2 \mathbf{CP} = 0$$

2. At iteration *k*, solve the Quadratic EVP

$$[\mathbf{A} - \mathbf{D}(\boldsymbol{\omega}_{k-1})]\mathbf{P} + \boldsymbol{\omega}_{k} \mathbf{B} \mathbf{P} + \boldsymbol{\omega}_{k}^{2} \mathbf{C} \mathbf{P} = 0$$

3. Iterate until convergence

$$\omega_k - \omega_{k-1} | < tol$$

 ω_k, \mathbf{P} is solution of the thermo-acoustic problem

Comparison with analytic results

About the iterative method

- No general prove of convergence can be given except for academic cases
- If it converges, the procedure gives the exact solution of the discrete thermo-acoustic problem
- The number of iterations must be kept small for efficiency (one Quadratic EVP at each step and for each mode)
- Following our experience, the method does converge in a few iterations ... in most cases !!

OUTLINE

- 1. Computing the whole flow
- 2. Computing the fluctuations
- 3. Boundary conditions
- 4. Analysis of an annular combustor

BC essential for thermo-acoustics

Acoustic analysis of a Turbomeca combustor including the swirler, the casing and the combustion chamber **C. Sensiau (CERFACS/UM2) – AVSP code**

Acoustic boundary conditions

Analytical approach

• Theories (e.g.: Marble & Candle, 1977; Cumpsty & Marble, 1977; Stow et al., 2002; ...)

• Conservation of Total temperature, Mass flow, Entropy fluctuations

Analytical approach

Analytical approach

98

Example: Compact nozzle

$$\begin{array}{c} \swarrow w^+ \\ \bigstar w^- \\ M_1 \\ M_2 \end{array}$$

1. Compact choked nozzle:

$$\frac{\omega^{-}}{\omega^{+}} = \frac{1 - (\gamma - 1)M_{1}/2}{1 + (\gamma - 1)M_{1}/2}$$

2. Compact unchoked nozzle:

$$\frac{\omega^{-}}{\omega^{+}} = \frac{(1+M_1) \left[M_2 \left(1+(\gamma-1)M_1^2/2 \right) - M_1 \left(1+(\gamma-1)M_2^2/2 \right) \right]}{(1-M_1) \left[M_2 \left(1+(\gamma-1)M_1^2/2 \right) + M_1 \left(1+(\gamma-1)M_2^2/2 \right) \right]}$$

November, 2010

Non compact elements

The proper equations in the acoustic element are the quasi 1D LEE:

$$\left(\frac{\partial \bar{u}}{\partial x} + \bar{u}\frac{\partial}{\partial x} + \frac{\bar{u}}{\mathcal{S}}\frac{\partial \mathcal{S}}{\partial x}\right)\hat{\rho} + \left(\frac{\partial \bar{\rho}}{\partial x} + \bar{\rho}\frac{\partial}{\partial x} + \frac{\bar{\rho}}{\mathcal{S}}\frac{\partial \mathcal{S}}{\partial x}\right)\hat{u} - j\omega\hat{\rho} = 0$$

November, 2010

VKI Lecture

Principle of the method

- 1. The boundary condition is well known at x_{out} (e.g.: p'=0)
- 2. Impose a non zero incoming wave at x_{in}
- 3. Solve the LEE in the frequency space
- 4. Compute the outgoing wave at x_{in}
- 5. Deduce the effective reflection coefficient at x_{in}

Example of a ideal compressor

November, 2010

VKI Lecture

November, 2010

VKI Lecture
OUTLINE

- 1. Computing the whole flow
- 2. Computing the fluctuations
- 3. Boundary conditions
- 4. Analysis of an annular combustor

Overview of the configuration

- Helicopter engine
- 15 burners
- From experiment: 1A mode may run unstable

About the computational domain

- When dealing with actual geometries, defining the computational domain may be an issue
- Turbomachinery are present upstream/downstream
- The combustor involves many "details": combustion chamber, swirler, casing, primary holes, multi-perforated liner Dassé et al., AIAA 2008-3007, …

Is this mode stable ?

- The acoustic mode found at 609 Hz has a strong azimuthal component, like the experimentally observed instability
- Its stability can be assessed by solving the thermo-acoustic problem which includes the flame response
- In this annular combustor, there are 15 turbulent flames ...
- Do they share the same response ?

Using the brute force ...

Large Eddy Simulation of the full annular combustion chamber Staffelbach et al., 2008

- The first azimuthal mode is found unstable from LES, at 740 Hz
- Same mode found unstable experimentally

Mode structure

- In annular geometries, two modes may share the same frequency
- These two modes may be of two types
- Consider the pressure as a function of the angular position

Turning mode. A + = 1 & A - = 0

Companion mode turns counter clockwise

Standing mode. A + = A - = 1

Companion mode has its nodes/antinodes at opposite locations

LES mode. A + = 1 A - = 0.3

- A simple analytical model can explain the global mode shape obtained from LES
- Can we predict the stability by using the Helmholtz solver ?

November, 2010

Responses of the burners

- Because of the self-sustained instability, the pressure in front of each burner oscillates
- This causes flow rate oscillations
- Because the unstable mode is turning, the flow rate through the different burners are not in phase

Global Response of the flames

- From the full LES, the global flame transfer of the 15 burners can be computed from the global HR and the flow rate signals
- For all the 15 sectors, the amplitude of the response is close to 0.8 and the time lag is close to 0.6 ms
- This result support the ISSAC assumption ...

November, 2010

ISAAC Assumption

• As far as the flame response is concerned

- Independent Sector Assumption for Annular Combustor
- Allows performing a single sector LES with better resolution to obtain more accurate FTF
- Of course the1A mode cannot appear is such computation
- FTF deduced from single sector LES pulsated at 600 Hz

November, 2010

Local flame transfer function

Typical field of interaction index

Extended the local n- τ model

- Define one point of reference upstream of each of the 15 burners
- Use the **ISAAC** Assumption
- the interaction index $n_l(\mathbf{X}, \omega)$, and the time delay $\tau_l(\mathbf{X}, \omega)$ are the same in all sectors

$$\hat{\omega}_{T}(\mathbf{x}, \boldsymbol{\omega}) \propto \begin{cases} n_{l}(\mathbf{x}, \boldsymbol{\omega}) \times e^{j\boldsymbol{\omega}\tau_{l}(\mathbf{x}, \boldsymbol{\omega})} \times \hat{\mathbf{u}}(\mathbf{x}_{ref}^{1}, \boldsymbol{\omega}) \cdot \mathbf{n}_{ref}^{1} & \text{if } \mathbf{x} \text{ in sector } 1 \\ n_{l}(\mathbf{x}, \boldsymbol{\omega}) \times e^{j\boldsymbol{\omega}\tau_{l}(\mathbf{x}, \boldsymbol{\omega})} \times \hat{\mathbf{u}}(\mathbf{x}_{ref}^{2}, \boldsymbol{\omega}) \cdot \mathbf{n}_{ref}^{2} & \text{if } \mathbf{x} \text{ in sector } 2 \\ \vdots \\ n_{l}(\mathbf{x}, \boldsymbol{\omega}) \times e^{j\boldsymbol{\omega}\tau_{l}(\mathbf{x}, \boldsymbol{\omega})} \times \hat{\mathbf{u}}(\mathbf{x}_{ref}^{14}, \boldsymbol{\omega}) \cdot \mathbf{n}_{ref}^{14} & \text{if } \mathbf{x} \text{ in sector } 14 \\ n_{l}(\mathbf{x}, \boldsymbol{\omega}) \times e^{j\boldsymbol{\omega}\tau_{l}(\mathbf{x}, \boldsymbol{\omega})} \times \hat{\mathbf{u}}(\mathbf{x}_{ref}^{15}, \boldsymbol{\omega}) \cdot \mathbf{n}_{ref}^{15} & \text{if } \mathbf{x} \text{ in sector } 15 \end{cases}$$

Extended the local n- τ model

- Assume ISAAC and duplicate the flame transfer function over the whole domain
- In the same way, duplicate the field of speed of sound

Stability of the 1A mode

The 1A mode from the Helmholtz solver looks like the 1A from the full LES

- BUT ...
 - 1. Its frequency remains close to 600 Hz instead of 740 Hz
 - 2. It is found stable !

Shape of the 1A mode

- The 1A modes from the Helmholtz and LES solvers resemble ...
- But a closer look reveals important differences

Helmholtz solver LES solver

- What is observed in the Helmholtz solver
 - 1. Pressure amplitude (slightly) larger upstream of the burners
 - 2. No phase shift between upstream and downstream

November, 2010

What's wrong ?

 The Helmholtz solver is not as CPU demanding and allows parametric studies

- The 1A mode is found stable for time delays smaller than T/2
- At 600 Hz, this corresponds to $\tau < 0.83$ ms
- The time delay of the FTF (0.65ms) is below this critical value

What's wrong ?

- Remember the full LES oscillates at 740 Hz
- This corresponds to a critical value for the time delay of T/2 = 0.67 ms, very close to the prescribed time delay
- From the LES, the flow rate and HR are indeed in phase opposition

November, 2010

Back to the stability of the 1A mode

- Instead of imposing the time delay in the FTF, let's impose the phase shift between flow rate and HR
- The 1A mode is now found unstable by the Helmholtz solver, consistently with LES and experiment
- The mode shape is also in better agreement

THANK YOU

More details, slides, papers, ... http://www.math.univ-montp2.fr/~nicoud/